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SUMMARY 
A model for simulating the process of mould filling in castings is presented. Many defects in a casting have 
their origins at the filling stage. Numerical simulation of this process can be of immense practical benefit to 
the foundry industry, however a rigorous analysis of this process must model a wide range of complex 
physical phenomena. In order to contain the costs and complexity that would be necessary for such a model, 
certain simplifying assumptions have been made. These assumptions limit the scope of this model to only 
predicting realistic thermal fields during the filling process. 

A laminar regime has been assumed for the flow field, which is obtained by solving the incompressible 
Navier-Stokes equations using a velocity-pressure segregated semi-implicit finite element method. The free 
metal surface is predicted by advecting a pseudo-concentration function via the computed flow field. This 
involves an explicit finite element solution of a pure advection equation. The thermal field is calculated by 
solving the convective-diffusive energy equation by an explicit finite element method using the computed 
flow field and the location of the free surface. All the advection terms are discretized using a Taylor-Galerkin 
method. The interface between the metal and mould is modelled using special interface elements. 

The model is demonstrated by solving practical example problems. The results show that a sharp thermal 
front is maintained during the course of filling without excessive diffusion. The heat diffusion in the mould 
can be controlled by varying the metal mould heat transfer coefficient. 
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INTRODUCTION 

The numerical prediction of realistic flow patterns in the filling of a metal casting is an extremely 
difficult task. With state ofthe art numerical methods for incompressible flow, it is doubtful that 
realistic flow simulations in castings can ever be achieved regardless of the cost. However, some 
form of filling and thermal analysis is essential for a reliable prediction of the cooling and 
solidification of castings, coupled with residual stress and distortion calculations. This is because 
the accuracy of a heat transfer and stress analysis of a casting is partly dependent upon the 
knowledge of the true initial conditions. As these are the conditions at the end of the filling 
process, a good filling analysis should provide a reasonable approximation. If the filling time 
obtained from the flow analysis of a casting is close to reality, one may reasonably use the values 
of the temperature and the velocity field at the end of such an analysis as the initial conditions for 
a thermomechanical analyses. This is one of the main objectives of the present work. 

Even for the limited aims of this work a variety of issues require consideration. Some of the 
main physical and numerical aspects of this problem may be listed as follows: 

(a) A robust and efficient transient incompressible flow solver is required in order to model the 
metal flow into the mould. This solver must also be able to model a moving free surface, 
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hence a choice must be made between one of several formulations. The choice that is 
natural for moving boundary problems are Lagrangian and ALE (Arbitrary Lagrangian- 
Eulerian)lp3 methods which allow the explicit determination of the free surface and have 
certain advantages in modelling advection-dominated transport. The main drawback of 
these methods is the requirement of a robust unstructured automatic mesh generator as 
frequent remeshing will be required due to the rapid distortion and movement of the free 
surface. For 3D problems especially, this is a serious limitation. Of the various Eulerian 
methods, one has to choose either between implicit methods, based on a mixed velo- 
city-pressure form~la t ion ,~  or semi-implicit segregated velocity pressure  formulation^.^-^ 
Because of the advection-dominated nature of the problem, fully implicit methods are not 
suitable. In view of these facts the segregated approach has been chosen in this work. 

(b) If an Eulerian approach is chosen, it is necessary to select a technique which is suitable for 
tracking the free surface on a fixed finite element mesh. The method used here is based upon 
the Volume of Fluid Method (VOF).' Using this technique, the moving metal front is 
represented by a nodal variable which is advected using the velocities from a solution of the 
Navier-Stokes equations. A laminar flow regime is assumed in this work, which implies 
that the thin boundary layer at the walls, where most of the velocity variation occurs, is not 
modelled. Thus, if the actual boundary condition of zero velocity at the walls is rigidly 
applied, this would lead to a very sluggish and unrealistic movement of the fluid at the wall. 
This problem is remedied by allowing the fluid to slip at the walls.' 

(c) Once the velocities and the metal surface have been determined, the temperature field has to 
be calculated. It is clear that a very high temperature gradient exists in the vicinity of the 
metal surface which must be faithfully transported. The advection-dominated nature of the 
transport requires that special techniques are used, as it is well known that the conventional 
Galerkin Finite Element Method (GFEM) fails in this situation. There are several ways of 
dealing with this problem. The Streamline Upwind Petrov-Galerkin method (SUPG)" has 
been very successful for steady-state problems. Other methods include space-time FEM, 
split-operator methods, adaptive FEM and combinations of these. The Taylor-Galerkin 
method'' is more suitable for transient problems as the diffusion-like terms which are the 
main characteristic of the upwind methods, arise naturally in this method, from considering 
higher-order Taylor series terms during the temporal discretization stage. This method can 
be seen as a particular form of the more general SUPG method and possesses the same 
capacity to deliver excellent stability and smoothness in the advected variable field with 
negligible false diffusion.' For convection-dominated problems the timestep size is re- 
stricted because of accuracy-requirements. The explicit nature of the discretized equations 
resulting from the Taylor-Galerkin method is particularly suitable in this context as the 
cost per timestep is minimized. 

(d) At any given time the metal occupies only a part of the flow mesh, therefore a fictitious 
material is necessary to fill the remaining portion. For the heat transfer calculations the 
properties of air are used for this material. Also, properties of the fictitious material are 
selected in order to minimize the effect on the actual flow field and to avoid numerical 
instabilities. 

(e) As the metal flows along the mould walls, it cools by losing heat to the mould. The contact 
between the mould and metal is, in general, not perfect, which again requires careful 
treatment. Special interface elements, of zero thickness, are used to control the heat transfer 
from metal to mould based on values of heat transfer coefficient, which may be known or 
estimated. 
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(f) In real castings there exist small gaps at the joints and split lines of steel moulds. Sand 
moulds have a porous structure in addition to the split lines. These spaces provide routes 
for the air to escape from the mould as the metal fills. No such spaces exist in a finite element 
mesh. This problem has been dealt with in this work by having a large number of exits 
distributed on the flow boundary at appropriate locations. This allows the entrapped air to 
escape. However, if a solidification model, coupled with velocity suppression in the solid 
region, is not implemented, the metal will also escape. The sudden imposition of zero 
velocity boundary conditions when the metal reaches the outlets is another approach, but 
this can easily cause instabilities due to the introduction of shocks into the system. 

(8) Other physical phenomena which are important, but have not been considered in this work 
are solidification during filling, surface tension effects and gas absorption. 

Most other researchers working on the modelling of the mould filling problem use finite 
difference methods, often in conjuction with the SOLA-VOF' method for tracking the fluid 
front.12-" Hartin' gives a comparison of implicit and explicit solution techniques for casting 
simulations. The finite difference approach of Swaminathan and Voller" draws an analogy 
between the filling of a computational cell and the evolution of latent heat, resulting in an 
enthalpy-type formulation suitable for both filling and solidification. 

Finite element approaches include that of Waite and Samonds,' who solve the Navier-Stokes 
equations using a segregated velocity-pressure formulation, including a Darcy term in the 
momentum equations, to model the effect of solidification of the velocity field. They use the VOF 
approach, using an upwinded form of the advection equation, to provide the free surface 
information. Backer" uses an unmodified SOLA-VOF algorithm but includes a facility for 
modelling processes which use backpressure or vacuum. Zhang and Liu" use a simplified model 
based on potential theory in which the free surface is modelled by using VOF in conjunction with 
the Bernoulli equation 

GOVERNING DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS 

The conservation equations and appropriate boundary conditions used in the present model are 
as follows. 

Conservation of mass. 

v - v  = 0 

where v is the velocity vector. 

Conservation of momentum. An expanded version of the stress divergence form is used, 

p - + v - v v  = - V P  + V . p ( V v  + (VV)T) + pg (; ) 
in which P is the pressure, p the dynamic viscosity, p the density and g is the gravitational 
acceleration. 

The essential, or Dirichlet, boundary conditions for the Navier-Stokes equations are specified 
in terms of the velocities at the boundaries. 

V =  w on rl (3) 
Pressure may not be specified at the boundary as it is an implicit variable in an incompressible 
flow4 which propagates at infinite speed to deliver a solenoidal velocity field. The natural, or 



496 R. W. LEWIS, A. S. USMANI AND J. T. CROSS 

Neumann, boundary conditions may be applied as normal and/or tangential traction forces, 

f r = p  (;: -+- 2) o n T 2  

where n and z are the unit normal and tangent vectors, respectively. Also, rl u r2 = r, and 
rl n Tz = 4, where, 4 is the null set. 

Conservation of the metal front position. A pseudo-concentration function is used to track the 
free fluid surface. If this function is represented by F(x,  y, t )  for a 2D flow, the first-order pure 
advection equation, which conserves the function F ( x ,  y, t ) ,  is written as 

aF 
- + V - V F  = 0 
at 

A particular value of the pseudo-concentration function, F ,  is associated with the free fluid 
s ~ r f a c e , ~  and it can be tracked in time by simply plotting the contour of F ,  at each timestep. The 
value of F ( x ,  y, t )  = 0.0 = F ,  is used to mark the free surface, while F ( x ,  y, t )  > 0.0 indicates the 
fluid region and F ( x ,  y,  t )  < 0.0 the empty region. As this is a hyperbolic or pure advection 
equation, the boundary values of F are required only at the nodes where the fluid enters the 
cavity. A value of F = 1.0 has been routinely used by the authors for this purpose. 

Conservation of energy. Finally, the heat transfer is controlled by the advective-diffusive 
energy equation, which is 

pc  rz + v - V T )  = V . kVT 

where c and k are the specific heat and thermal conductivity, respectively, and T is the 
temperature. 

Dirichlet boundary conditions for this equation consist of specified temperature values at the 
boundaries 

~ = e  o n r ,  (8) 
The general Neumann boundary condition for the energy equation may be written as 

aT 
an 

k -  + q + h ( T -  T,) = 0 on rb (9) 

where q, h and T, are specified boundary heat flux, convective heat transfer coefficient and the 
ambient temperature, respectively. ra and rb must obey the same conditions as rl and r2. 

DESCRIPTION OF THE ALGORITHM 

The Navier-Stokes equations are discretized using the fractional-step method of Donea et aL5 
The advection part of the Navier-Stokes equations is discretized via the Taylor-Galerkin 
procedure described by Lava1 and Quartapelle.22 The Taylor-Galerkin procedure first suggested 
by Donea et a1.,"'23 has been used to discretize the pseudo-concentration equation and the 
energy equation. An unstructured mesh of four-noded quadrilateral elements has been used for 





Plate 2. Front positions and tem
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the example problems. Linear shape functions have been employed for all the nodal variables 
except pressure which has been assumed to be constant over an element. 

A detailed description of the full computational algorithm follows. 

The flow jield 

and incompressibility. 
The Navier-Stokes equations are solved in three separate stages: advection, viscous diffusion 

Advection 

aV 
at 
- + v - v v  = 0 

This equation is first discretized in time using the first two terms of the Taylor series expansion for 
the temporal derivative. The temporally discretized form obtained is 

where v* is an intermediate velocity field, and v, is the velocity at timestep n. This equation is now 
spatially discretized using the Galerkin form of the Finite Element Method (GFEM). The fully 
discretized system results in a matrix system of the form 

As this equation represents 
equation, the only boundary 
flowing inward on rl, or 

the discrete version of the hyperbolic part of the Navier-Stokes 
conditions to be applied at this stages are the prescribed velocities 

Equation (12) can now be solved explicitly if MI is converted to a row-sum-type lumped mass 
matrix. However, a lumped mass approach will always degrade advection solutions.24 Donea 
et aL5 proposed an iterative explicit procedure which uses both lumped and consistent mass 
matrices to obtain a significantly improved solution. 

Consider an equation system of the form 

M u = f  (14) 
where 

u = u,+1 - un 

(n  being the time level). The iterative explicit procedure may be applied to this system according 
to the following relation: 

Lupfl = f - (M - L)uP (15) 

here M and L are consistent and lumped mass matrices respectively, and p is the iteration index. 
This procedure has been used here to obtain the intermediate step velocity v* from equation (12). 
The matrix S1 in equation (12) is the advection matrix which includes terms arising from the 
Taylor-Gderkin discretization. 
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Viscous difusion 

a V  

at 
p - = v * p(Vv + (VV)T) + p g  

The equation is discretized by using a standard GFEM procedure to obtain 

Mz r**Ay ' * )  = K l ( v * )  + F1 

The prescribed velocity boundary conditions are applied as 

v** = w on rl 
and the viscous part of the natural boundary conditions are applied on boundary Tz. Equation 
(17) is solved explicitly using a lumped form of the matrix MZ. An iterative solution is not 
necessary as the lumped explicit solutions for diffusion remain smooth is the timestep size is 
within specified stability limits. In equation (17), K ,  is the standard viscous diffusion matrix and 
F1 is the force vector containing contributions from gravity and/or boundary loading. 

Incompressibility. The velocity field obtained above (v**) does not, as yet, satisfy conservation 
of mass; the remaining equations to be dealt with are 

p - =  a V  - V P  
at 

and 

v - v  = 0 

If equations (19) and (20) are discretized via GFEM, we obtain 

v,+1 - v** 
M,( At ) = c P n + l  

CT(V,+ 1) = 0 (22) 
where C is a gradient and CT a divergence matrix. Taking the divergence of both sides of equation 
(21) (after premultiplying by MY1) and cancelling the v , + ~  term using equation (22) ,  we have 

CTV** 
C T M Y 1 C P n + l  = - ~ 

At 

This equation is used to calculate the pressure, P,+ 1.  The final velocities may then be obtained 
from equation (21) and the forced boundary condition, 

v , + ~  = w on rl (24) 
Further details and analysis of segregated velocity-pressure-type formulations for the finite 
element modelling of the incompressible Navier-Stokes equations may be obtained from 
Gresho.6 

Pseudo-concentration function for front tracking 

The pseudo-concentration equation (6) is a hyperbolic or pure advection equation. If the 
pseudo-concentration function is advected using conventional GFEM then severe oscillations are 
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usually generated. This problem can be remedied by a Taylor-Galerkin discretization of equation 
(6) as in Reference 9. If such a discretization is performed the following equation is obtained: 

Fn+l - Fn = (-  ( V , + ~ ~ ~ - V )  + 
At 2 

where v,+ l j z  represents (v,+ + v,)/2. The fully discretized equations result in a matrix system of 
the form 

with the boundary condition, 

F = 1.0 on rl I in flow (27) 
This equation is solved using the iterative explicit procedure mentioned earlier. The advection 
matrix, Sz, includes the diffusion-like terms arising from the Taylor-Galerkin discretization. An 
expanded form of this matrix may be found in Reference 9. 

Heat transfer during Jilling 

dealt with. To this end equation (7) is split into a convection and a thermal diffusion stage. 
The heat transfer analysis of the filling process requires that both advection and diffusion are 

Convection 

dT 
- + v * V T =  0 
at 

This equation is exactly the same as equation (6) for the pseudo-concentration function. 
A Taylor-Galerkin discretization of equation (28) results in an expression for an intermediate 
temperature field, 

which is similar to equation (26). Spatial discretization of the above, using standard GFEM, 
results in a matrix system of the form 

M5 (y) = S3(Tn) 

subject to the boundary condition, 

T = @  onr~l inf low 

Again, this equation is solved using the iterative explicit procedure. The advection matrix, S3,  
includes the Taylor-Galerkin terms. An expanded form of this matrix may also be found in 
Reference 9. 

Thermal dijfuusion 

(32) 
aT 

PC- = V-VT 
at 
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This part is discretized using standard GFEM and results in 

M6 ("+ ii '*) = K,(T*) + Q (33) 

with the fixed temperature boundary condition, 

T = 8  o n r ,  (34) 
The natural boundary conditions are included in the vector Q and K2 is the standard heat 
diffusion matrix. Temperatures at the end of the stage are calculated from equation (33) by the 
lumped explicit procedure. 

STABILITY CONSIDERATIONS 

Figure 1 shows the complete algorithm at a glance. 
The explicit nature of this type of model means that timestep size limitations must be adhered 

to. This would normally make such a model more expensive than an implicit one. However, for 
advection-dominated flows, the timestep size is merely a reflection of the physics of the problem, 
and implicit algorithms, although stable with larger timesteps, require small timesteps to achieve 
acceptable accuracy. The actual timestep size limits are dictated by one of the following three 
criteria: 

Thermal diffusion. For lumped explicit solution, 

h2 
At < - 

CI 

where ci = k/pc.  

Momentum diffusion. For lumped explicit solution, 

h2 
At < - 

V 

Advection. For iterative explicit solution, 

where C = vAt/h. 

The mesh sizes are also limited due to the restriction of a maximum mesh Peclet number (Pe,) 
for heat transfer and a maximum mesh Reynold's number (Re,) for the flow. These limits are as 
follows. 

Heat transfer: 

vh 
(Pe), = - < 1 

a 

Momentum transfer: 

oh 
(Re), = - < 1 

V 
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Figure 1. The filling simulation algorithm 

The theoretical limit for these numbers is unity, however the solution remains stable for 
considerably larger values. The actual values of (Pe,) and (Re,) at which instabilities begin to 
appear depend upon the temperature or momentum gradients prevailing in the solution domain. 
For a low gradient the solution will remain stable for large value of (Pe,) or (Re,)  and vice versa. 
For the examples presented in this paper, values for both (Pe,) and (Re,) of up to 25 were allowed 
without causing any instability. 

METAL-MOULD INTERFACE ELEMENT 

During the filling process (and during solidification after filling), thermal barriers exist at the 
metal/mould interface in the form of die coatings and/or air gaps. If the heat transfer at this 

Interface Element 

Mould Elements Metal Elements 

Figure 2. Interface element with its nodal connectivity 
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interface is to be accurately modelled, the heat transfer coefficient between the two faces must be 
known for all possible conditions. This information is not readily available. However, by 
incorporating interface elements,25 whose stiffness depends upon the local heat transfer coeffic- 
ient (suitable values of which must be estimated), a significant improvement can be achieved in the 
solution. Figure 2 shows a typical interface element. The stiffness matrix for the interface element 
is calculated by integrating over the length of the element only as its width is zero. This means 
that only one of the two sides of the interface element can be used to generate the whole matrix. 
The full stiffness matrix can be written as 

from which it can be seen that all the terms in the matrix are obtained from the terms contained in 
the top-left quadrant, which can be calculated by 

K i j  = hfNiNjdl, i = 1 , 2  and j = 1,2 b 
where, 1 is the length of the interface element, hf is the heat transfer coefficient and Ni and Nj are 
standard finite element shape functions. The stiffness contribution from the interface elements are 
incorporated in matrix K, in equation (33) during the assembly process. In explicit calculations 
however, this is only symbolic as there is no need for assembly. 

Test example of filling by injection 

A realistic geometry shape is modelled to demonstrate a filling process representing pressure 
diecasting. The mesh for the cavity and the mould appears in Figure 3. The metal is injected into 
the mould with a uniform velocity from the inlet at the top (effect of gravity is not con- 
sidered). The flow corresponds to an Re of 100.0. For the thermal analysis the real properties of 
metal (aluminium), air and die (steel) have been used. 

pme, = 27000 kg/m3 k,,, = 200.0 W/mK c,,, = 9000 J/kg K 

pair = 1.0 kg/m3, kair = 0.025 W/mK, cair = 1000.0 J/kg K 

Pdie = 78000 kg/m3, kdi,  = 48.0 W/mK, 

The coefficient of heat transfer for the metal-mould interface was assumed to be 30000 W/Km2. 
The mesh contained 6469 elements and 6662 nodes and was run for 10 0o0 timesteps. Three front 
positions and isotherms are shown in Plate 1. 

It can be seen from the results of Plate 1 that the sharp thermal gradient at the metal front is 
maintained as the casting fills. The discontinuity of isotherms at the metal/mould interface is due 
to the interface elements. The front positions in Plate 1 are indicated by two constant value 
contour lines which enclose the contour value F = 0.0. It can also be seen from the figure that the 
distance between these two lines remains practically unchanged throughout the analysis. This 
demonstrates that the pseudo-concentration function is also advected without any false diffusion. 
Also, it was not found necessary to smooth the pseudo-concentration field at any stage of the 
calculation. 

Cdie = 450.0 J/kgK 
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Figure 3. Mould and cavity mesh for the injection filling example 

Figure 4. Velocity vectors for the injection filling example at 6.0 s 

In order to properly fill the casting and provide adequate exits for the air to escape, 16 outlets 
were provided as seen from the velocity vector plot in Figure 4. This did allow the filling to 
proceed in a satisfactory manner, however, in the later stages of the filling more metal was leaking 
out of than filling the casting. A solidification model, implemented with a technique for velocity 
suppression in the solid region, needs to be developed to solve this problem. Furthermore, the 
same flow properties (density and viscosity) where used in both the metal and air regions to avoid 
constructing, factoring and solving the pressure matrix at every timestep. As the pressure solution 
is implicit, for this size of problem orders of magnitude more CPU time would be needed. More 
realistic filling patterns will be achieved if different properties for metal and air are used. As the 
timesteps used are very small due to stability requirements, the pressure solution changes very 
slowly, and subcycling6 the pressure can be used to reduce the computing time. 

Test example offilling by gravity 

Another realistic problem was modelled to demonstrate filling in a gravity diecasting process. 
The mesh for the cavity and mould is shown in Figure 5. The metal enters the mould at the top 
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Figure 5. Mould and cavity mesh for the gravity filling example 

Figure 6. Velocity vectors for the gravity filling example at 0.4 s 

left-hand side and accelerates as it fills down the sprue towards the casting. The flow corresponds 
to an Re of approximately 50. For the thermal analysis, the same properties as in the previous 
example were used. The heat transfer coefficient at the metal-mould interface for this example 
was assumed to be 10000 W/Km2. 

The temperature and the front positions are shown in Plate 2. As demonstrated in the previous 
example, both the temperature and pseudo-concentration field are advected without excessive 
diffusion resulting in the preservation of the steep gradients. Identical flow properties for the 
metal and air were again used for this example. This results in unrealistic front positions as the 
metal fills the casting via the feeding system. However, there were no problems in filling the 
casting completely as there were only two exits, as seen from Figure 6. 

CONCLUSIONS AND DISCUSSION 

At this stage the model presented in this paper is only suitable for realistic thermal analysis. 
However, the main advantage is that it can provide practically useful results using computing 
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resources affordable by medium to small size industries. The temperature profiles from the two 
examples solved show little false diffusion and the interface elements produced realistic looking 
results as seen from the discontinuity of the temperature field at the metal-mould interface. These 
results are very encouraging in our quest for obtaining a high-quality initial thermal field from 
a mould filling analysis. 

Further improvements can easily be made to enhance the utility of the model. The enthalpy 
method can be implemented to model solidification during filling. A combination of various 
convection modelling techniques, such as SUPG and adaptivity,26 with the present scheme may 
further improve the resolution of the interface and also improve numerical stability. In general, 
finer meshes require smaller timesteps however, numerical instabilities are sometimes also caused 
by high gradients passing through coarse elements. 

With the inherent advantages of the finite element method in terms of geometry resolution, it is 
expected that this model will provide an excellent foundation on which a realistic mould filling 
simulation facility may be built. 

For a more realistic analysis of the filling process and free surface movement, far more 
sophisticated models are required which will need orders of magnitude more computing resources 
than available at present. Such models will probably be of a Lagrangian-type incorporating state 
of the art turbulence modelling techniques with fine resolution of the near wall regions. 
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